Mostrar el registro sencillo del ítem

dc.creatorDelgadillo-Puga, Claudiaes_ES
dc.creatorTorre-Villalvazo, Ivanes_ES
dc.creatorCariño-Cervantes, Yonatan Y.es_ES
dc.creatorGarcía-Luna, Cinthiaes_ES
dc.creatorSoberanes-Chávez, Paulinaes_ES
dc.creatorGortari, Patricia dees_ES
dc.creatorNoriega, Lilia G.es_ES
dc.creatorBautista, Claudia J.es_ES
dc.creatorCisneros-Zevallos, Luises_ES
dc.date2023
dc.date.accessioned2025-03-06T18:27:30Z
dc.date.available2025-03-06T18:27:30Z
dc.date.issued2023
dc.identifierJC21es_ES
dc.identifier.urihttp://repositorio.inprf.gob.mx/handle/123456789/8231
dc.identifier.urihttps://doi.org/10.3390/ijms24043909
dc.descriptionCardamom seed (Elettaria cardamomum (L.) Maton; EC) is consumed in several countries worldwide and is considered a nutraceutical spice since it exerts antioxidant, anti-inflammatory, and metabolic activities. In obese individuals, EC intake also favors weight loss. However, the mechanism for these effects has not been studied. Here, we identified that EC modulates the neuroendocrine axis that regulates food intake, body weight, mitochondrial activity, and energy expenditure in mice. We fed C57BL/6 mice with diets containing 3%, 6%, or 12% EC or a control diet for 14 weeks. Mice fed the EC-containing diets gained less weight than control, despite slightly higher food intake. The lower final weight of EC-fed mice was due to lesser fat content but increased lean mass than control. EC intake increased lipolysis in subcutaneous adipose tissue, and reduced adipocyte size in subcutaneous, visceral, and brown adipose tissues. EC intake also prevented lipid droplet accumulation and increased mitochondrial content in skeletal muscle and liver. Accordingly, fasting and postprandial oxygen consumption, as well as fasting fat oxidation and postprandial glucose utilization were higher in mice fed with EC than in control. EC intake reduced proopiomelanocortin (POMC) mRNA content in the hypothalamic arcuate nucleus, without an impact on neuropeptide Y (NPY) mRNA. These neuropeptides control food intake but also influence the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes. Thyrotropin-releasing hormone (TRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) and circulating triiodothyronine (T3) were lower in EC-fed mice than in control. This effect was linked with decreased circulating corticosterone and weight of adrenal glands. Our results indicate that EC modulates appetite, increases lipolysis in adipose tissue and mitochondrial oxidative metabolism in liver and skeletal muscle, leading to increased energy expenditure and lower body fat mass. These metabolic effects were ascribable to the modulation of the HPT and HPA axes. LC-MS profiling of EC found 11 phenolic compounds among which protocatechuic acid (23.8%), caffeic acid (21.06%) and syringic acid (29.25%) were the most abundant, while GC-MS profiling showed 16 terpenoids among which costunolide (68.11%), ambrial (5.3%) and cis-α-terpineol (7.99%) were identified. Extrapolation of mice-to-human EC intake was performed using the body surface area normalization equation which gave a conversion equivalent daily human intake dose of 76.9-308.4 mg bioactives for an adult of 60 kg that can be obtained from 14.5-58.3 g of cardamom seeds (18.5-74.2 g cardamom pods). These results support further exploration of EC as a coadjuvant in clinical practice.es_ES
dc.formatPDFes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation24(4):3909
dc.rightsAcceso Cerradoes_ES
dc.titleCardamom (Elettaria cardamomum (L.) Maton) Seeds intake increases energy expenditure and reduces fat mass in mice by modulating neural circuits that regulate adipose tissue lipolysis and mitochondrial oxidative metabolism in liver and skeletal musclees_ES
dc.typeArtículoes_ES
dc.contributor.affiliationDepartmento de Nutrición Animal Dr. Fernando Pérez-Gil Romo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico
dc.contributor.emailclaudia.delgadillop@incmnsz.mx (C.D.-P.) ; lcisnero@tamu.edu (L.C.-Z.)
dc.relation.jnabreviadoINT J MOL SCI
dc.relation.journalInternational Journal of Molecular Sciences
dc.identifier.placeSuiza
dc.date.published2023
dc.identifier.organizacionInstituto Nacional de Psiquiatría Ramón de la Fuente Muñiz
dc.identifier.eissn1422-0067
dc.identifier.doi10.3390/ijms24043909
dc.subject.kwCardamom
dc.subject.kwEnergy expenditure
dc.subject.kwMitochondrial activity
dc.subject.kwFat mass
dc.subject.kwHypothalamic-pituitarythyroid axis
dc.subject.kwHypothalamic-pituitary-adrenal axis
dc.subject.kwPhenolic and terpenoid profiles


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem