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SUMMARY

The present paper describes several aspects of the biological activities,

physiological and behavioral responses displayed by the most recent

discovered opioid peptides: endomorphins. Endormorphins comprise

two endogenous C-terminal amide tetrapeptides, named as

endomorphin-1 (EM1; Tyr-Pro-Trp-Phe-NH2) and endomorphin-2

(EM2; Tyr-Pro-Phe-Phe-NH2), which were discovered a decade ago

(1997) by Zadina’s group. Initially, they reported the identification of

two endogenous opioid peptides that displayed high binding affinities

and selectivities for the µ-opioid receptor among other identified and

cloned opioid receptors. These led authors to support the hypothesis

that endomorphin peptides represent the endogenous ligand agonists

for the µ-opioid receptor. Both peptides were identified and isolated

from bovine and human brains. They consist of four amino acids

that share a 75% structural homology among amino acids, and which

display the structural α-amidated form of C-terminal –Phe- residue,

as demonstrated for many other bioactive neuropeptides.

These peptides are structurally distinct from other endogenous

opioid substances identified in the brain of mammals, although they

share some similarities with other amide terapeptides such as Tyr-W-

MIF-1, found also in the mammalian brain. Here, we review the

structure-relationship activity of both endomorphin molecules

comparing their binding properties to different opioid receptors. Both

EM1/EM2 peptides appear to be vulnerable to enzymatic degradation

when exposed to the activities of different proteolytic enzymes, as

occurs with many other neuroactive peptides found in the SNC of

mammals. Immunohistochemical studies showed the wide and

asymmetric distribution of both EM1-2 peptides in the brain, leading

to the extensive pharmacological, cellular, and physiological studies

that demonstrated the wide and varied bioactivities displayed by these

peptides at both central and peripheral tissues. These studies led

several authors to suggest the potential endogenous role of these

peptides in major physiological processes (e.g. analgesia or

antinociception). Based on the generation of specific (rabbit)

polyclonal antibodies and the use of combined radioimmunoassay

(RIA) techniques and immunohistochemical procedures, it was shown

the wide distribution of EM1-2-LI (endomorphin1-2-like

immunoreactivities) throughout the brain of different species (e.g.

rat, primate, human), particularly co-localized in specific areas where

µ-opioid receptor has been shown to be expressed. IHC mapping of

endomorphin material in the CNS showed a parallelism with the

neuroanatomical distribution of other endogenous opioid peptides

(e.g. Met/Leu-enk, Dynorphin A, β-endorphin) previously reported.

These studies showed for instance that, whereas EM1-LI was

shown to be widely and densely distributed throughout the brain,

particularly in forebrain structures (e.g. nucleus accumbens [NAc];

cortex [Cx]; amygdale [AMG]; thalamus [Th], the hypothalamus [Hyp],

the striatum [CPu]), including the upper brainstem (BS); and dorsal

root ganglia (DRG); EM2-LI is highly expressed in spinal cord and

lower brainstem. Interesting enough is the demonstration of the

expression of EM1-2-LI outside the CNS (e.g. spleen, thymus and

blood), and detected in immune cells (e.g. macrophages/monocytes,

lymphocytes, and polymophonuclear leucocytes) surrounding

inflammatory foci. Pharmacological studies showed that these peptides

displace with high potency several µ-opioid receptor ligands agonists

in a concentration-dependent manner. Moreover, EM1-2 peptides have

been shown to modulate the release of several conventional transmitters

from neurons (e.g. DA, NA, 5-HT, ACh) besides on active

neurohormones. Additionally, in vitro and in vivo studies showed that

both EM-1/EM-2 peptides produce their pharmacological and

biological effects by stimulating either µ1 or µ2-opioid receptors, which

mediate the distinct pharmacological activities detected for each

peptide. Cellular studies showed that both EM-1/EM-2 peptides induce

a potent granule/vesicle endocytosis and trafficking of µ-opioid receptor

in cells transfected with the µ-opioid receptor cDNA; following some

endocytosis responses and µ-opioid receptor trafficking mechanisms

shown in enteric neurons; cells previously reported to express naturally

µ-opioid binding sites on cells.

Endomorphins have been shown to induce potent antinociceptive

responses after ICV or IT administration into mice; to modulate

nociceptive transmission and pain sensation into the brain after
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stimulating peripheral nociceptors on primary neuronal afferents; and

to generate cross-tolerance between endomorphin peptides and

between EM1 and opiate compounds, such as morphine.

Key words: Endomorphins, peptides, nociception, analgesia, mu-

opioid receptor, physiology, immunoreactivity.

RESUMEN

Este artículo resume varios aspectos de las múltiples actividades bio-

lógicas, celulares, efectos farmacológicos, respuestas fisiológicas y

conductuales de dos nuevas sustancias peptídicas de naturaleza

opioide, descubiertas recientemente y denominadas endomorfinas.

Las endomorfinas son dos péptidos opioides, clasificados como

endomorfina-1 (EM1, Tyr-Pro-Trp-Phe-NH2) y endomorfina-2 (EM2,

Tyr-Pro-Phe-Phe-NH2), cuyas secuencias peptídicas fueron identifica-

das y aisladas del cerebro de bovino y humano por el grupo de Zadina

en 1997. Estudios de unión radioligando-receptor demostraron que

estos péptidos se unen con alta afinidad de unión al receptor opioide

µ en relación con su capacidad de unión a otros subtipos de recepto-

res opioides (kappa [κ], delta [δ]), previamente identificados en el

SNC de mamíferos. Ambos péptidos están compuestos por cuatro

aminoácidos y son estructuralmente distintos de las demás sustan-

cias opioides endógenas conocidas.

Esta revisión detalla con precisión diversos aspectos de la

farmacología y actividades celulares de estos opioides y sus

implicaciones en la modulación de distintas circuitos o vías neurales y

funcionamiento del SNC de los mamíferos, respectivamente. Los

estudios relacionados con la función estructura-actividad de estos

péptidos han mostrado que, al igual que la mayoría de los péptidos

bioactivos endógenos de naturaleza opioide y no opioide, son

vulnerables a la escisión peptídica por cortes enzimáticos mediante la

exposición a distintas enzimas proteolíticas que pudiesen participar en

la degradación endógena de las endomorfinas, y la obtención de

diversos productos de degradación. Asimismo, este artículo menciona

la amplia distribución neuroanatómica que poseen las endomorfinas

en distintas regiones del cerebro, particularmente en aquellas que

regulan el procesamiento y la transmisión de la información nociceptiva

y que, por tanto, reflejan el papel potencial de estos péptidos en procesos

fisiológicos de analgesia, entre muchos otros (memoria y otro

aprendizaje). En este contexto, diferentes estudios basados en el empleo

de ensayos inmunológicos (radioinmunoensayos [RIA] y técnicas de

inmunohistoquímica [IHC]) que requieren el uso de anticuerpos

específicos generados contra las secuencias consenso de las

endomorfinas mostraron una amplia distribución de material

inmunoreactivo a endomorfina (vg., EM1-LI, EM2-LI) en tejidos neurales

de humano, bovino y roedores. Por ejemplo, la EM1-LI mostró una

distribución relativamente abundante en una gran mayoría de las

regiones del SNC de mamíferos estudiados, particularmente en la

región rostral y superior del tallo cerebral, así como en el núcleo

accumbens (NAc), la corteza prefrontal y frontal (PFCx), la amígdala

(AMG), el tálamo (TH), el hipotálamo (HPT), el estriado (CPu) y fibras

nerviosas de la raíz del ganglio dorsal (DRG). En contraste, la expresión

de EMZ mostró ser muy abundante en la región de la médula espinal

y en la región caudal del tallo cerebral.

La distribución de material inmunoreactivo a EM1-2 en el SNC

de mamíferos mostró similitudes en cuanto a la distribución

neuroanatómica reportada para otros péptidos opioides endógenos,

previamente identificados (vg., encefalinas, dinorfinas, endorfinas). Así

mismo, estudios paralelos lograron identificar la presencia de EM1-2-

LI en órganos periféricos (vg., bazo, timo, células inflamatorias del tipo

de macrófagos-monocitos, linfocitos y leucocitos PMN) y en plasma.

Más aún, diversos estudios farmacológicos han mostrado que las

actividades biológicas y respuestas fisiológicas de las EM1-2 están

mediadas a través de la estimulación de los subtipos de receptores

opioides µ1 y µ2. Estudios de inmunohistoquímica (IHC) demostraron

la colocalización del receptor opioide µ y las EM1-2 en diversas regiones

del SNC de mamiferos. Esto ha permitido proponer que las EM1-2

representan una nueva familia de péptidos opioides con funciones

neuromoduladoras relevantes en el SNC, las cuales intervienen en la

regulación de los procesos biológicos de percepción del dolor;

respuestas de estrés; funciones límbicas de placer y recompensa

inducidas por incentivos naturales y/o sustancias psicotrópicas;

funciones de estado de alerta y vigilia, funciones cognitivas (de

aprendizaje y memoria) y actividades de regulación neuroendócrina.

Además, diversos estudios celulares han mostrado que ambos

péptidos opioides son capaces de inducir la internalización aguda o

endocitosis del receptor opioide µ en células somáticas transfectadas

con el ADN (ADNc) que codifica este mismo receptor opioide. Al igual

que otros péptidos opioides (v.g., encefalinas), diversos estudios

mostraron el catabolismo enzimático de estos péptidos amidados

mediante la actividad de enzimas proteolíticas (v.g., carboxipeptidasa

Y, aminopeptidasa M), lo que ha permitido sugerir que estos péptidos

opioides son degradados por rutas de degradación enzimática similares

que rigen para múltiples péptidos bioactivos moduladores en el SNC

de los mamíferos. Al igual que otros péptidos endógenos, ambas

endomorfinas mostraron la capacidad de modular la liberación

neuronal de neurotransmisores (DA, NA, 5-HT, ACh) y hormonas

peptídicas en áreas específicas del cerebro de los mamíferos. Asimismo,

ambos péptidos mostraron una capacidad de generar efectos

antinociceptivos potentes en forma dosis-dependiente posterior a su

administración ICV o IT en animales experimentales, además de generar

respuestas de tolerancia cruzada entre ambas endomorfinas y/o entre

la EM1 y alcaloides opiáceos del tipo de la morfina.

Palabras clave: Endomorfina, péptidos, nocicepción, analgesia, re-

ceptor opioide mu, fisiología, inmuno reactividad.

INTRODUCTION

Extensive studies on opiate receptor pharmacology led to
the initial identification of the three major families of
endogenous opioid ligands referred to as endorphins,1,2

enkephalins,3 and dynorphins,4,5 and most recently the
nociceptin/OFQ peptide.6,7 Cloning and molecular
characterization of the genes that encode the different
propeptide precursors —namely pro-opiomelonocortin,2

proenkephalin A,8-10 prodynorphin,11 and pronociceptin/
OFQ peptide—12-14 showed that these large opioid
propeptide precursors contain different copies of active
peptide sequences flanked by pairs of basic amino acids
(e.g. Arg-Arg or Arg-Lys), which upon tissue specific endo
and exopeptidases15-17 mature opioid peptides are released
from LDCV vesicles into the extracellular space by stimuli-
coupling dependent mechanisms.18-21 Activation of the G-
protein coupled membrane opioid receptors22-26 by
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endogenous opioid peptides results in the expression of a
vast number of pharmacological, physiological,
neuroendocrine, and behavioral responses in the CNS of
mammals and humans.27

I. STRUCTURE-RELATIONSHIP ACTIVITY
OF ENDOMORPHINS

 Naturally occurring opioid peptides identified and cloned
from mammalian tissues —such as casomorphin
heptapeptide (Tyr-Pro-Phe-Pro-Gly-Pro-Ile), obtained from
tryptic digests of β-casein;28 hemorphin-4 (Tyr-Pro-Trp-
Thr), obtained from hemoglobin digests;29 the amide
tetrapeptides, Tyr-MIF-11 (Tyr-Pro-Leu-Gly-NH2), and Tyr-
W-MIF-1 (Tyr-Pro-Trp-Gly-NH2), isolated from the bovine
and human brains, respectively— display preferential
binding affinities and selectivity for the µ-opioid receptor
when compared to both δ- and κ -opioid receptors,
respectively.30,31 Nonetheless the previous observation,
these peptides displayed low-to-medium binding affinities
(Ki= 10-80 nM) for the µ-opioid receptor.32

A large number of synthetic analogs of Tyr-W-MIF-1
peptide (Tyr-Pro-Trp-Gly-NH2), which that contain all
possible natural amino acid substitutions at position 4 with
exception of the Gly residue, were used to screen out
peptide compounds capable of displaying high and
selective binding properties at the µ-opioid receptor
(Kid≤1.0 nM). Zadina’s group reported the identification
of a potent peptide sequence (Tyr-Pro-Trp-Phe-NH2),
named as endomorphin 1 (EM1), which displayed the
highest binding affinity (Ki=360 pM, 0.36 nM) and
selectivity for the µ-opioid receptor (e.g. 4000-15,000-fold
over δ- and κ -opioid receptors, respectively), when
compared to other endogenous opioid ligands, including
β-endorphin.33,34 This peptide sequence identified and
isolated from cortical tissues of mammalian brains (e.g.
bovine and human).33,35 This newly identified opioid

peptide was extremely potent in the guinea pig ileum assay,
a classic test for µ-opioid receptor agonist activity33 shown
to display a potent and specific antinociceptive effect in
vivo, as shown in the tail-flick test33,35 and thereby modulate
both supraspinal and spinal antinociception) after ICV or
IT injection of the peptide.36-40 A structurally close related
peptide sequence, named as, endomorphin-2 (EM2) (Tyr-
Pro-Phe-Phe-NH2) was subsequently isolated from
mammalian tissues33 and shown to be almost as potent as
endomorphin-1.33,35

Thus, endomorphins molecules represent the first
peptides isolated from brain shown to bind the µ-opioid
receptor with high affinity and selectivity and categorized
as the natural opioid peptide ligands for the µ-opioid re-
ceptor in mammals, including humans.34 However, despite
the whole range of activities reported for these peptides
(see below), no existing evidences have been reported on
the cloning of specific mRNA(s) encoding a precursor
molecule(s) for these opioide peptides, as demonstrated for
other major family of opioid peptides found in mammals
(e.g. proenkephalin A, prodynorphin, POMC, proNOC/
OFQ peptide).8,12,41

Structurally, the peptide sequences encoded by each
endomorphin molecules (EM1, EM2) have been shown to
be completely different from the consensus motif encoded
by several endogenous opioid peptides (e.g. endorphins,
enkephalins, and dynorphins) as depicted in figure 1. As
shown, classical opioid peptides share the Tyr-Gly-Gly-Phe
motif at the N-terminus domain of each peptide, whereas
EM1 and EM2 contain two pharmacophoric amino acid
residues (Tyr [1] and Trp[3] in EM1; Phe[3] replacing Trp
[3] in EM2) joined together via a Pro(2) amino acid residue,
used as molecular spacer in both peptides. Both phenolic
groups (Tyr, Phe) and/or aromatic rings (Trp, Phe) encoded
by each amino acid residue represent structural and
chemical requirements for opioid receptor recognition.32

Using nuclear magnetic resonance approaches to reveal
amino acid conformation of endomorphin molecules and

Figure 1. Representative structural features of active opioid peptides in the CNS of
mammals. The figure displays the amino acid sequences of different endogenous
opioid peptides previously identified and cloned from the brain of mammals, inclu-
ding the most recent EM1/EM2 peptides, identified and isolated from the human and
bovine brain. Structural homology shared by each opioid peptide listed is outlined by
the shaded amino acids at the N-terminal domain of each peptide. Implications of
the structural homology and identity among mammalian and non-mammalian spe-
cies (not shown here) demonstrates conservation of shared amino acid sequences
along evolution (text and figure were adapted from Darlison and Richter, 1999, and
modified for the present review).

Leu-Enkephalin (Homo sapiens) YGGFL
Nociceptin/ Orphanin FQ (Homo sapiens) FGGFTGARKSARKLANQ
Dynorphin  A (Homo sapiens) YGGFLRRIRPKLKWDNQ
Dynorphin  B (Homo sapiens) YGGFLRRQFKVVTRSQEDPNAYSGELFDA
Met-Enkephalin (Homo sapiens) YGGFM
β-Endorphin (Homo sapiens) YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE
Endomorphin-1 (Bos Taurus) YPWF
Endomorphin-2 (Bos Taurus) YPFF
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the structural domains required to recognize opioid
receptors, these studies revealed that both Tyr(1) and Trp(3)
side chains display opposite orientations with respect to
Pro(2), which provides the necessary stereochemical
properties of endomorphin-1 for binding the µ-opioid re-
ceptor.42 Moreover, using pseudo-proline containing
analogs of EM2, it was shown that the Tyr-Pro amide bond
forms a cis-conformation structure along the peptide
backbone, allowing its molecular conformation to bind and
recognize the µ-opioid receptor.43

II. DISTRIBUTION OF ENDOMORPHINS
IN CENTRAL AND PERIPHERAL TISSUES

OF MAMMALS

Immunological assays (e.g. radioimmunoassays, immuno-
cytochemical analyses) using different rabbit antisera raised
against synthetic peptides of EM1 and EM2 showed that
endomorphin1-2-like immunoreactivities (EM1-2-LIs) are
widely distributed throughout the neuroaxis of the rat, pri-
mate, and human brains,35,44-50 displaying a preferential
localization in areas where MOR-LI (µ-opioid receptor-
immunoreactivity) is highly expressed (see representative
immunoreactive areas in figure 2).51 Although EM1-2-LIs
were localized in cells and fibers in similar regions of the rat
CNS (e.g. stria terminalis [ST]; periaqueductal gray [PAG];
locus coeruleus [LC]; parabrachial nucleus [PBN];
hypothalamus [HPTH]; nucleus of the solitary tract [NTS]),
major differences about the neural distribution of these
peptides were detected.44,47,49 For instance, EM1-LI was
shown to be widely and densely distributed in several
forebrain structures (e.g. nucleus accumbens [NAC]; the
cortex [Cx]; amygdale [AM]; thalamus [TH]; the
hypothalamus [HTH]; striatum [ST]), together with the
upper brainstem (e.g., nucleus of the solitary tract [NTS])
and the dorsal root ganglia,47,50 whereas EM2-LI was
localized mostly in the spinal cord and lower brainstem,47,49

showing densely stained cell bodies and axon fibers within
the nucleus of the solitary tract (NTS); substantia gelatinosa
of the medulla and superficial layers of the spinal cord/dor-
sal horn, including the lateral hypothalamus.44,47,50 Although
these studies showed that the anatomical distribution of EM1-
2-like immunoreactive material along the rat CNS parallels
the regional localization of several endogenous opioid
peptides and their cognate opioid receptors;52,53 differences
observed between the endomorphin material, enkephalin,54,55

and dynorphin56 peptide systems showed that EM2-LI in the
mammalian brain47,50 is highly analogous to the distribution
of the µ-opioid receptor peptide ligand, β-endorphin (BE).57

Moreover, it has been shown that endomorphins do not
co-localize with brain areas expressing µ-opioid receptors
(e.g. striatum) containing low-to negligible amounts of EM1-
2-LI material.49 This asymmetric localization between

endomorphins peptides and their corresponding binding
sites in areas of the rat brain does not preclude the synaptic
activation of membrane bound opioid receptors. However,
µ-opioid receptors and EM1-2-LI fibers have been shown to
co-localize in limbic structures of the rat brain (e.g. septal
nuclei, the bed nucleus of the stria terminalis, NAC,
amygdaloid complex, hypothalamic nuclei), whereas in other
rat brain regions (e.g. amygdala, thalamus, hypothalamus,
PAG), showing for instance the co-localization of low levels
of EM1-2-LI in areas displaying high density of opioid-
binding sites (figure 2).47,49,58

Very few reports have documented the extraneuronal
distribution of endomorphin material in peripheral
tissues,32 in contrast with the vast reports describing the
distribution and expression of µ-opioid receptors in
extraneuronal tissues.27 For instance, using RIA assays in
combination with reversed phase high-performance liquid
chromatography techniques (RP-HPLC),59 it was found the
expression of detectable amounts of EM1-LI and EM2-LI
in human spleen, as compared to high levels of EM1-2-like
immunoreactive material detected in non-neuronal tissues
of the rat, such as spleen and thymus, including plasma.
These results contrast the low amounts of EM1-2-LI detected
in anterior and posterior rat pituitaries, showing that
secretion of opioid material from the pituitary gland does
not contribute at all to the significant high levels of EM1-2
detected in plasma.59 Based on these results, authors

Figure 2. Schematic representation of the distribution of endo-
morphin immunoreactivity in functional structures of the rat bra-
in implicated in nociceptive transmission and pain modulation.
The figure depicts representative brain areas involved in modulation
nociceptive transmission, pain sensation. Spotted areas denote the
distribution of endomorphin-1 and endormorphin-2-like immunoreac-
tivities (EM1-ir/EM2-ir) in functional areas of the rat brain Immuno-
reactive brain areas shown here represent major structures in the
CNS where EM1-2 peptides have been shown to display their antino-
ciceptive opioid-dependent effects. Positive areas of the rat brain shown
to contain EM1-ir and/or EM2-ir were found to express moderate to
dense immunoreactive fibers and somata (not shown) among the
distinct regions involved in regulating antinociceptive bioactivies, as
depicted in the illustration. Abbreviations: AMG, amygadala; ARC,
arcuate nucleus; DMH, dorsomedial, nucleus; DTN, dorsal nucleus;
HIPP, hippocampus; HPT, hypothalamus; LC, locus coeruleus; LH, la-
teral nucleus; NTS, nucleus of the solitary tract (cv, caudal ventrolate-
ral; im, intermediate, ro, rostral); PAG, periaqueductal gray; PBN,
parabrachial nucleus; PFCx, prefrontal cortex; PVN, paraventricular
nucleus; RD, caudal dorsomedial part of NTS; VCx, visual cortex;
VMH, ventromedial nucleus (text and figure were obtained and adapted
from Fichna et al., 2007, and modified for the present review).
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proposed that EM1-2-like immunoreactive material secreted
from the nerve fibers and/or presynaptic terminals localized
in the spinal cord may explain the high content of
endomorphin material observed in human and/or rat plas-
ma samples.59 Moreover, endomorphins were shown to be
expressed by immune cells (e.g., macrophages/monocytes,
lymphocytes, and polymorphonuclear leukocytes),60,61

including inflamed subcutaneous tissue.62 Endomorphins
have been found to alter a variety of immune parameters
and functions,63-66 as well as to inhibit spleen cell antibody
formation when added to in vitro culture systems at
femtomolar concentrations (10-13 M to 10-15 M) and reverted
after application of specific EM1/EM2 polyclonal rabbit
antisera.67

III. BINDING ASSAYS AND CELLULAR ACTIONS
OF ENDOMORPHINS

A large number of pharmacological and molecular studies
have clearly demonstrated that the µ-opioid receptor
mediates the spectrum of opiate-related activities of
endomorphins in the CNS of mammals.32 The proposed
hypothesis suggesting that endomorphin molecules are the
endogenous ligands for the µ-opioid receptor, aroused from
classic binding assays and functional studies, which showed
that both endomorphin peptides displaced DAMGO (Tyr-
DAla-Gly-MePhe-Gly-ol); naloxone, and other µ-opioid re-
ceptor-selective ligands, in a concentration-dependent
manner68 and stimulate the binding of [35S]guanosine 5'-O-
(3-thio)triphosphate ([35S]γGTP) in riched mu-opioid
receptors-membrane preparations, isolated from thalamus69-

71 periacuectal gray area (PAG)72 and pons/medulla.73

Moreover, autoradiographic studies using radiolabeled
tracers of endomorphin molecules showed that these ligands
matched the neuroanatomical distribution of DAMGO-
binding sites (a conventional µ-opioid receptor selective
ligand used as standard in binding studies) in the rodent’s
brain, postulating thus the role of endomorphins «as the
preferential endogenous ligands of the µ-opioid receptor in the
brain».32

However, based on the lower efficacy of endomorphins
in stimulating µ-opioid receptors in several bioassays (e.g.
([35S]γGTP binding) compared to DAMGO and morphine,
both peptides have been regarded as partial agonists of µ-
opioid receptors.71,74 The extent to which these relative
efficacies of endomorphins apply in the expression of
functional bioactivities is still unclear and further analysis
is needed to solve this issue.

Moreover, pharmacological studies showed that both
EM1 and EM2 produce their biological effects by functionally
stimulating different µ-opioid receptors subtypes, µ1
(MOR1)/µ2 (MOR2)-opioid receptors, which appear to be
responsible for the distinct pharmacological activities

mediated by opiate alkaloids, including both EM1-2
peptides.38,40,75 For instance, the µ1 receptor antagonist,
naloxonazine, displayed a potent efficacy in blocking the
antinociception response induced by EM2 compared to that
exhibited by EM1. Converserly, the µ-opioid receptor
antagonist, β-funaltrexamine, was capable of inhibiting the
antinociceptive responses induced by both EM1-2
molecules.38,40,75

Pharmacological and molecular studies, showed that
spinal administration of specific antisense oligodeoxy-
nucleotides (used to knockdown the expression of the µ-
opioid receptor genes) differentially attenuated the
antinociception induced by either EM1 and/or EM2
peptides.76,77 These studies proved that endomorphin
molecules activate and modulate µ2-receptor induced-
responses (e.g. spinal analgesia, respiratory depression, and
inhibition of gastrointestinal motility),78 whereas EM2
appears to modulate µ1-dependent responses, which
include supraspinal analgesia, acetylcholine (ACh), and
prolactin release from hypothalamus.78 Thus, these data
provided significant insights on the differential regulation
of µ-opioid receptor subtypes and their interaction with
endomorphin peptides.

Quite interesting to note is that in vivo studies using
radioligand binding techniques, combined with autoradio-
graphic procedures, demonstrated that endomorphin
peptides labeled some binding sites shown for DAMGO in
specific reports of the rat brain,36,70,71 support the endogenous
role of EMI-2 as µ-opioid receptor peptide ligands (partial
agonists of µ-opioid receptor) involved in the regulation of
several µ1/µ2 opiate-receptor related bioactivities.32

Furthermore, a vast number of cellular and pharmaco-
logical studies showed that chronic exposure of µ-opioid
receptor-agonists mediate long-lasting changes and
cellular adaptations that underlie the development of
opiate tolerance and physical dependence in animals and
humans.79-81 These observations led pharmacologists to
limit a wide range of µ-opioid receptor-binding agents,
clinically used to treat pain–related disorders.82,83 In vitro
studies have shown that chronic administrations of EM1-
2 peptides stimulated the development of tolerance in
specific neuronal-tumor cell lines (e.g. SH-SY5Y
neuroblastoma cells).84,85 For instance, chronic exposure
of EM1/EM2 peptides on Chinese hamster ovary cells
(functionally transfected with a µ-opioid receptor cDNA)
induced a naloxone-dependent increase of forskolin-
stimulated adenylyl cyclase activity above baseline
responses, whereas in monkey kidney cells a specific EM1-
2-dependent increase of type I and V-adenylyl cyclase
isozymes was observed.86

In extension to the aforementioned studies, intracellular
signaling pathways and trafficking molecules have been
shown to mediate vesicle-endocytosis in brain cells expressing
µ-opioid receptors, exposed to both opiates and opioid
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peptide ligand agonists.87,88 For instance, endomorphins have
been shown to induce potent granule/vesicle endocytosis
and trafficking of µ-opioid receptor in cells (transfected with
the µ-opioid receptor cDNA), inducing similar sort of
endocytosis and trafficking mechanisms for µ-opioid
receptors in enteric neurons (shown to synthesize and
express naturally opioid-receptor binding sites).85 This
peptide-inducing regulated endocytosis and trafficking of
µ-opioid receptor in cells has been shown to mediate
desensitization, resensitization, and down-regulation of
distinct molecular mechanisms that mediate the cell
responsiveness to ligand stimulation, involved in the
development of opioid tolerance and drug addiction.89

In vivo experiments showed that endomorphin peptides
induced a naloxone-precipitated withdrawal response in rats,
effects similar to those induced using same dose-unit of
morphine.90 Using a preestablished scoring system used to
detect specific withdrawal signs in rats (e.g. chewing,
sniffing, grooming, wet-dog shakes, stretching, yawning,
rearing, jumping, teeth grinding, ptosis, diarrhea, penile
erection), Chen et al. demonstrated that endomorphin pre-
treatment for 5 days (20 µg, ICV administration), followed
by naloxone (4mg/kg, IP) administration, rats displayed
physical signs of opioid dependence, exhibiting different
potency for different withdrawal signs.90

The documented µ-opioid receptor ligand agonists
(involved in the development of tolerance and physical
dependence in animals and humans) have been suggested
to operate through the interaction of conventional transmitter
systems (e.g. dopamine[DA];91-93 norepinephrine [NE];94-97

cholinergic [ACh];98,99 benzodiazepine;100 GABA101 and N-
methyl-D-aspartate [NMDA],102 imidazoline103 and glutama-
tergic neural pathways).104 However, no data on the
interactions between endomorphin peptides and aforemen-
tioned transmission systems have been reported.32

Nitric oxide (NO) has been suggested to participate in
the cellular mechanisms involved in peptide(s)-inducing
physical dependence, based on observations that NO synthase
inhibitors attenuated some signs of naloxone-precipitated
withdrawal and cell-hyperactivity at the locus coeruleus
(LC).105 In addition, the intrathecal (IT) infusion of morphine
was shown to increase the N-methyl-D-aspartate (NMDA)
binding activity, besides of inducing an up-regulation of NO
synthase expression in neurons as well.106

IV. DEGRADATION OF ENDOMORPHINS:
PEPTIDE CATABOLITES AND BIOACTIVITIES

Endomorphins have been shown to be vulnerable to
enzymatic cleavage and several enzymes have been
proposed as participants in endomorphin degradation.107

Studies performed to analyze the enzymatic degradation
of endomorphins upon exposure to the activity of

proteolytic enzymes (e.g. carboxipeptidase Y and A,
proteinase A, and aminopeptidase M) showed a chromato-
graphic profile of recovered endomorphin metabolites
eluted from the HPLC column (figures 3A-B).108 These
studies led to the proposal that enzymatic cleavage
mediated by aminopeptidase M (EC 3.4.11.2) and/or
aminopeptidase P (EC 3.4.11.9) degrade N-terminal Tyr-
Pro peptide bonds, thus releasing the N-terminal amino
acid (Tyr) and generating a tripeptide fragment from
endomorphin molecules.109,110 Moreover, it has been shown
that peptide sequences containing N-terminal hydrophobic
residues followed by a Proline (Pro) residue; the preceding
two amino acids (e.g., H2N-Tyr-Pro) in the peptide moiety
may be released by aminopeptidase M, as an intact
dipeptide (e.g. Tyr-Pro).111 In addition, enzymes —such as
carboxypeptidase Y (a serine peptidase, EC 3.4.16.5) and/
or proteinase A (a non-pepsin-like acid endopeptidase [EC
3.4.23.6]), shown to display deamidase activities— have
been postulated to catalyze the C-terminal amide group
and catalyze the hydrolysis of the Xaa(3)–Phe(4) peptide
bond (Xaa= natural amino acid), possibly by hydrolyzing
EM1-2 peptide sequences into peptide acids, after releasing
ammonia and cleaving off the C-terminal Phe(4) amino acid
residue (figures 3A-B).108,112

Other enzymes, shown to display peptidase activities
on distinct polypeptides, have been included as potential
degrading enzymes of endomorphins. For instance, the
membrane-bound serine proteinase, dipeptidyl-peptidase IV
(DPPIV) (EC.3.4.14.5), has been shown to remove N-termi-
nal dipeptide sequences from different polypeptides that
contain the Pro residue at the penultimate position (H2N-
Tyr-Pro…..Xn-COO-).113 In vivo studies have shown that two
groups of enzymes (e.g. proteinase A, aminopeptidase M/
P), working together in related catalytic pathways, may
catalyze the degradation of endomorphins from formed
dipeptides into single amino acids. In this context, the serine
proteinase/DPP-IV system could trigger the catalytic activity
of EM1/EM2 by cleaving the Pro(2)–Trp(3) and Pro(2)–Phe(3)
peptide bonds, respectively, followed by the aminopeptidase
M/P activities, recruited to catalyze secondary peptide
cleavages. That is, hydrolyzing released dipeptides (Tyr-Pro/
Trp-Phe in EM1; Tyr-Pro/Phe-Phe in EM2) into single amino
acids.114 Although the Tyr(1)–Pro(2) peptide bond might also
be cleaved during the first step of enzyme processing
pathway (dipeptide formation), some authors argued that
EM1 appears to be more resistant to enzymatic degradation
in vivo than EM2.115 Such proposals appear to be in good
agreement with the observations showing that the spinal
antinociceptive effects induced by EM1 are significantly
longer than those induced by EM2.116 In a similar context,
the analgesia induced by EM1 required a longer pre-
treatment time than that required for EM2, before tolerance
is detected in mice.117 In addition, the antidepressant-like
activity induced by EM2 results in a relatively shorter



Endomorphin peptides: pharmacological and functional implications in the brain of mammals

185Vol. 33, No. 2, marzo-abril 2010

duration than that detected for EM1 in mice, after ICV
administration of each peptide (figures 3A-B).32

One crucial aspect to elucidate the byproducts formed
during the degradation of endomorphins is that the
catabolites produced during peptidase activity could dis-
play related bioactivities similar to the parent compound.
Thus, competition between endomorphin byproducts and
full peptide sequences for the m-opioid receptor binding
sites would lead to the expression of cellular and related
opioid-bioactivities.32,118 In such context, radioligand
binding studies demonstrated that the primary degradation
products of EM1 (Tyr-Pro-Trp-Phe-OH and/or Pro-Trp-
Phe-OH) displayed a very low m-opioid receptor binding
affinity, showing no substantial activation/stimulation on
Go/Gi proteins and non-antinociceptive activity after ICV
administration of cleaved catabolites of EM1 in mice (figu-
res 3A-B).118 Parallel studies used to evaluate the

relationship between the binding activity of EM1/EM2
peptides and byproducts of peptide catabolism showed that
peptidase inhibitors (e.g. diprotin A [Ile-Pro-Ile] a specific
DPP-IV inhibitor) have no effect on the binding properties
displayed by [3H]-EM2 on rat brain membrane preparations.
However, when no inhibitor was added to the incubation
mixture, 40% of the radioligand was degraded by
endogenous membrane–bound proteinases.119 Moreover,
ICV administration of a different DPP-IV inhibitor (e.g. Ala-
pyrrolidonyl-2-nitrile) produced a significant increase in the
antinociception activity induced by EM2, as shown for the
altered analgesic related-parameters (e.g., magnitude,
duration, and potency) detected in the rat tail-flick test.120

Similar EM2- induced analgesic effects were observed with
diprotin A (a DPP-IV inhibitor), which produced a five-fold
increase in potency with respect to EM2 itself in the paw
withdrawal test114 or with actinonin (a selective serine-

Figure 3. Schematic representation of the proposed enzymatic pathways involved in the catalysis of endomorphin peptides in the
brain. Both panels illustrate enzymes and pathways implicated in the degradation of endomorphin peptides in both neural and non-neuronal
tissues. Panel A depicts the enzymatic degradation of endomorphins at the C-terminal domain of both molecules. Endomorphins exposed to
Carboxypeptidase Y (CPY, a serine peptidase, EC 3.4.16.5) and/or Proteinase A (PTA, a non-pepsin type acid endopeptidase, EC 3.4.23.6)
have been proposed as the enzymatic route implicated in the initial catalysis of the C-terminal domain of both amide tetrapeptides. Thus, both
CPY and PTA may hydrolyze the C-terminal amide group (Phe-CO-NH2) into a carboxyl group (-Phe-OH) followed by enzymatic hydrolysis of
the Xaa(3)-Phe(4) peptide bond in EM1 and EM2 molecules, releasing the Phe residue, as shown (see text for more details).
Panel B depicts the proposed degradation of endomorphin peptides at the N-terminal domain of both molecules, where the aminopeptida-
se M (APM, EC 3.4.11.2) and/or aminopeptidase P (APM, EC 3.4.11.9)(not shown) enzymes could hydrolyze the N-terminal domain of both
opioid amide tetrapeptides; releasing from either EM1 and/or EM2 peptides, the N-terminal amino acid (Tyr) together with the correspon-
ding tripeptide sequence (EM1; Pro-Trp-Phe-NH2; EM2; Pro-Phe-Phe-NH2). Both APM and the membrane bound serine proteinase, dipeptidyl-
peptidase IV (DPP-IV, EC.3.4.14.5), have been proposed to participate in the initial release of the dipeptide (Tyr-Pro) from both EM1-2-
molecules, where APM may hydrolyze the dipeptide bond enhancing the releasing of both N-terminal amino acids from the peptide structure
(see text for more details) (text and figure were adapted from Fichna et al., 2007 and modified for the present review).
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proteinase/peptidase inhibitor), which blocked the peptide
catabolism of EM1, when incubated in a 6-day-old rat spinal
cord homogenate, producing a potent antinociception effect
compared to the peptide alone.121

V. ENDOMORPHINS REGULATING
CONVENTIONAL NEUROTRANSMITTERS

SYSTEMS AND RELEASE
OF PEPTIDE HORMONES

Both exogenous and endogenous opioid receptor ligands
display their biological activites by modifying the function
and release of conventional transmitters in the CNS of
mammals, including the evoked-release of various
neurohormones from neuroendocrine tissues.32 Opioid
ligands regulating neurotransmitter release have been
extensively reviewed and reported elsewhere.32,122,123

In this context, µ-opioid receptor agonists have been
shown to regulate the neuronal release of dopamine (DA);124-127

norepinerphrine (NA);125,128,129 serotonin (5-HT),122,123,125 and
acetylcholine (ACh),130,131 in areas where µ-opioid receptors
have been found to be co-localized with each neurotransmitter
in specific areas of the mammalian brain.32

a) Dopamine (DA) transmission system

Immunohistochemical studies (IHC) revealed that µ-opioid
receptors are densely expressed on dopamine neurons in
the NAC and striatum in the CNS of rodents, including
primates and humans,132-134 and they play an important
regulatory role on the DA transmission system in these
brain structures.32 In the striatum, opioid ligands have been
shown to act on presynaptic opioid-receptors, producing
indirect effects on DA turnover. This effect on DA activity
varies according to the sort of opioid receptor bound by
ligands.135-137 For instance, striatal administration of ligand
agonists acting on postsynaptic µ-opioid receptors induced
an increased DA efflux from neuronal cells138 without
affecting the DA uptake or the levels of DA metabolites
(DOPAC, HVA).139 Interesting enough is that the
modulatory activity of DA release from striatal neurons by
µ-opioid receptor agonists, requires the integrity of both
cholinergic and GABAergic neurons,140 including the
nigrostriatal neural pathway, where µ-opioid receptor
agonists (e.g. morphiceptin) acting at a presynaptic level
prevented the neuronal release of DA.139,141

In the accumbal region (NAC), microdialysis studies
showed that µ-opioid receptor ligands agonists infused into
the NAC induced an increased accumbal DA release or DA
efflux in rats142 as shown for EM1-2 peptides, which
produced a dose-dependent increase in DA efflux from
NAC in freely moving rats.143 Whereas an accumbal
infusion of EM1 showed a dose-dependent increase of DA
efflux, which was abolished by intraccumbal perfusion of

CTOP or by systemic administration of naloxone and/or
naloxonazine,143 DA efflux induced by local infusion of
EM2 was not abolished by selective µ-opioid receptor
antagonists. This suggess that the EM2-induced effects may
be mediated through different receptors other than the µ-
opioid receptor.143 These studies support previous data
showing that EM2 induces a dose-dependent stimulation
of DA release and levels of DA metabolites (e.g. DOPAC,
HVA) from the accumbal shell region126 as a result of the
disinhibition of local GABA neurons.126

b) Noradrenergic (NA) transmission system

Noradrenergic system arises from a clustered group of NA-
containing cell bodies, that arises from the locus coeruleous
(LC) localized at the rostral area of the pons,144 and which
projects axon fibers to forebrain areas and limbic structures.
NA projecting fibers from LC represent the primary
source of NA in cortical and hippocampal areas of the
brain.145-147 The LC-NA neurons innervate almost all
regions of the neuraxis, influencing several bioactivities and
behaviors.148-150 LC-NA neurons also provide descending
fibers to both medulla and spinal cord involved
antinociceptive bioactivies.151-153 Neuroanatomical studies
using autoradiographic and electrophysiological
procedures using intracellular recording techniques
revealed the expression of a high-density of µ-opioid re-
ceptor at the LC,154-156 where endogenous opioid peptides
(e.g. morphiceptin, hemorphin-4, Tyr-MIF-1, Tyr-W-MIF-1),
including endomorphins and non-natural synthetic peptides
(e.g., Tyr-D-Arg-Phe-Sar; Tyr-D-Arg-Phe-Lys-NH2), shown
to bind and activate µ-opioid receptors, were shown to
modify the physiological activity of LC neurons.32,155

All peptides tested displayed opiate-alkaloid activities
on LC-NA cells,155 producing a dose- and time- dependent
electrophysiological responses (e.g. decreased neuronal
excitability; inhibition of spontaneous cell-firing, opioid-
induced hyperpolarization effect mediated through the
opening of inward-rectification potassium channels, and
other membrane bioactivies).155 Among the tested peptides,
EM1 and EM2 represented the most effective peptides
displaying equipotent electrophysiological responses (e.g.
hyperpolarizations) on LC-NA neurons at very low
concentrations, when compared to β-endorphin, DAMGO,
or morphine.32,155,157 These results led authors to assume
that the presence of the aromatic group on the Phe residue
at position 4, in addition of the structural C-terminal
amidation found in both EM1-2 peptides, represent crucial
structural features by which these peptides exert their
electrophysiological responses on LC-NA neurons after
binding their cognate µ-opioid receptors on these cells.32,155

Ultrastructural studies showed that EM1-LI was mostly
localized in axon terminals forming synaptic specializations
between tyrosine hydroxylase (TH) and CRF-containing
dendrites in peri-LC and Barrington’s nucleus (localized at
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the brainstem dorsal pontine tegmentum) in the rat brain.157

Both areas were shown to express high-densities of µ-opioid
receptors158,159 and were suggested to be targeted by EM1-
2 peptides, producing a significant reduction of LC-NA
neuronal excitability.157 Thus, EM1 could modulate LC
neurons directly by tonically inhibiting neurons within the
Barrington’s nucleus.157 Futhermore, physiological studies
showed the interaction between EM1 and NA at the level
of the spinal cord, showing that the IT administration of
EM1 in rats induced an evoked-release of NA from
presynaptic axon terminals that arise from LC-NA
descending neural pathways impinging into the dorsal horn
of the rat’s spinal cord.160 Thus, EM1 produced a potent
analgesia activity (measured in different behavioral models
of analgesia) by activating µ2-opioid receptors.32,160

c) Serotonin (5-HT) transmission system

The serotonin (5-HT) transmission system has been shown
to mediate a vast number of physiological and behavioral
responses in mammals (e.g. nociceptive, appetitive,
emotional, stress and anxiety, motor, cognitive, and
autonomic functions).161-165 Several bioactivities mediated
by serotoninergic tone in the brain have been found to be
influenced by the endogenous opioid system (EOS).32 The
serotonin (5-HT) transmission system is functionally
dependent on the serotoninergic tone of the CNS, which is
regulated by the firing activity of cell bodies (somata) which
are clustered in different nuclei along the midline of the
brainstem; namely, the dorsal raphe nucleus (DRN) and the
median raphe nucleus (MRN).162 Both nuclei have been
shown to project axon fibers to almost all forebrain structures
along the neuroaxis (e.g. mesolimbic areas, hippocampus,
and cortex), where 5-HT axons projecting to terminal fields
regulate the expression of different bioactivities and
behavioral repertoires required for survival and adaptive
functions in species.162 Thus, the 5-H/DRN located at the
ventral aspect of the PAG has been shown to be crucial for
the integration stress-responses,166 and pain and stressful
stimuli activating peptidergic neurons at the PAG have been
shown to modulate the firing activity of 5-HT neurons (at
the somatodendritic level) via activation of µ-opioid receptors
expressed at synaptic endings in short axons, innervating
the 5-HT/DRN.167,168 Finally, 5-HT/DRN neurons project
axon fibers to several limbic structures (e.g. amygdale, PFCx,
hippocampus, NAC) involved in handling emotional and
stress-related responses.167,169,170 However, the cellular
mechanisms by which opiod agonists affect the activity
5-HT neurons have not been completely elucidated.

For instance, previous electrophysiological studies
showed, on the one hand, that µ-opioid receptor agonists
induced significant inhibitory effects on cell-firing of DRN/
5-HT neurons.171 On the other hand, in vivo microdialysis
showed that opioid agonists induced an increased activity
on 5-HT neurons.167,172 Several mechanisms have been

offered to explain such inconsistencies based on the structural
organization of the DRN. This brainstem nucleus receives
neural inputs from local GABAergic neurons and from
descending glutamatergic axon fibers from the cortex, which
control the cellular excitability of 5-HT neurons and the net
equilibrium between both neural systems, will provide the
result on the neuronal release or efflux of 5-HT into the
external milieu.162 In this context, it has been shown that µ-
receptor agonists move the net equilibrium of both neural
systems into an increased release and extracellular levels of
5-HT at the DRN, possibly mediated through an opioid-
enhanced activity of the glutamatergic (excitatory) input on
5-HT/DRN neurons and/or opioid-induced disinhibitory
effect of GABAergic neurons.122

Microdialysis studies revealed that endomorphins
peptides influenced the activity of DRN/5-HT neurons by
increasing the net efflux of 5-HT (increased extracellular
levels of the aminergic transmitter) within the DRN. This
effect was blocked by selective µ-opioid receptor antagonists
such as β-funaltrexamine.122 In a similar context,
endomorphins have shown to modulate 5-HT activity in
other brain areas. For instance, EM1-2 peptides infused into
the VTA induced a significant decreased of 5-HT activity in
the rat PFCx (cortex) and NAC (ventral striatum), thus
suggesting that µ-opioid receptors could potentially mediate
a neuronal depletion of 5-HT in these brain areas.125

However, no effect on the 5-HT metabolite, 5-
hydroxyindoleacetic acid (5-HIAA), was found in the
NAC.126 In forebrain areas, DAMGO and EM1 produced a
strong, CTOP-reversible suppression of the 5-HT2A-induced
excitatory post-synaptic currents on layer V-pyramidal cells,
localized at the medial prefrontal cortex (PFCx).173 These
studies showed that µ-opioid receptor agonists act
presynaptically in cortical layer V pyramidal cells,174 and
the interaction of 5-HT2A and µ-opioid receptor ligands
appear to ocurr on projecting glutamatergic afferents sent
from thalamic or amygdale nuclei (e.g. basolateral
nucleus)175-177 that locally synapse layer V-piramidal cells.174

d) Acetylcholine (ACh) transmission system

With regard to the ACh-transmision system, several studies
showed that EM1-2 peptides modulate cholinergic
neurotransmission in peripheral tissues, such as the
respiratory system and the gastrointestinal (GI) tract (see
corresponding sections xiv and xv in the following chapter,
Part II, in this journal ) acting on prejunctional µ-opioid
receptors that inhibit the release of ACh that mediate the
contractile muscle-activity and peristalsis in the GI tract.32

In a similar context, recent experiments showed that EM1
regulates ACh-transmission system in the rat inner hair
cells.178 Using patch-clamp recording techniques, these
authors showed that EM1 inhibited the nicotinic receptor-
induced ACh-evoked currents in both frog saccular hair
cells and rat inner hair cells, respectively.32,178
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e) Release of neuropeptides hormones

Electrophysiological studies in vivo showed that EOS
regulates the electrical activity of the neuron cells that
synthesize and secrete oxytocin (OT) (from supraoptic nuclei
[SON] localized within the hypothalamus) and arginine
vasopressin (AVP) (from the anterior paraventricular nucleus
of the hypothalamus [PVN]).179,180 Previous studies showed
that µ-opioid receptor agonists produced a potent inhibition
on OT-secreting cells (SON), whereas neuronal-activity of
AVP-secreting cells (PVN) is decreased by the same recep-
tor agonists.181 In a similar context, endormorphin peptides
showed to display related activities on OT/SON and AVP/
PVN cells, respectively, showing that ICV administration of
EM1 into rats induced a more potent inhibition effect of OT
cells than on AVP cells.182 These effects detected on SON
versus PVN-cells were attributed to the number of cell-
surface opioid receptors expressed on each neurosecretory
cell.182 Recent studies showed that the oxytocin (OT) indu-
ces important antinociceptive effects in rodents and
humans,183-188 as shown after ICV,189 IP,183 or IT/IC184

administration of the peptide hormone, in addition of the
injection of the peptide directly into the PAG and NRM
(nucleus raphe magnus)190,191 (sections x-xiii in the following
chapter, Part II, in this journal).

Recent studies shed important data concerning the
interaction between µ-opioid receptors and OT-inducing
antinociceptive responses in the rat CNS.192,193 These
studies showed that µ-opioid receptors antagonists (e.g.
β-FNA) inhibited OT-induced antinociceptive effects in
response to the application of either thermal or mechanical
stimuli in rats. So far, no experimental data have
elucidated yet any role for the endogenous opioid system
(e.g. β-endorphin), including both EM1-2 peptides,
mediating the OT-induced antinociception responses in
animals.32

Most of the experimental data reporting on the
interaction between the AVP/PVN system and µ-opioid re-
ceptor agonists have been shown in stress-related behaviors32

(section xiii, in the following paper Part II, in this journal).
However, no experimental works have clearly elucidated
the mechanisms by which EOS and endormorphin peptide
interact with the AVP/PVN peptide system. Nonetheless,
recent documents showed that acute stress leads to an
increase synaptic concentration of AVP in the rat amygdala
or hypothalamus;194,195 where AVP released from PVN–
neuronal cells was shown to activate its cognate membrane
receptor (e.g. V1 receptor) and mediate crucial anxiogenic
and depressive behavioral responses in rodents.195

With regard to somatostatin, µ-opioid receptors ligand
agonists,196,197 including endomorphins,198 have been
reported to regulate gastric-somatostatin and neuroendocrine
activity at the GI tract (section xv, in the following chapter
Part II, in this journal). For instance, EM1 was shown to exert

an important inhibition on somatostatin-induced stimulation
in the perfused rat stomach, which was partially blocked
with CTOP.198 These results posit that EM1 acting on µ-opioid
receptors mediate in large part the opioid-inhibitory effect
on somatostatin activity.198 Mediated by the EM1 peptide,
this inhibitory effect might be similar for other regulatory
peptide-hormones in several systems.32 However, the
interaction between peptide-hormone activity and EM1-2
peptides needs further investigation.

VI. ENDOMORPHINS MODULATING
NOCICEPTIVE TRANSMISSION

AND TOLERANCE

With regard to µ-opioid receptor-mediating pain
modulation, in vivo studies showed that the intracerebro-
ventricular (ICV) administration of endomorphins
produced a potent antinociceptive effect in wild type
mice,33,34,68 showing no significant effect in µ-opioid recep-
tor mutant knockout mice.34,199-201 In a similar context,
intrathecal (IT) administration produced significant
antinociception effects in adult rodents exposed to the tail-
flick, paw-withdrawal, tail pressure, and/or flexor-reflex
tests, respectively (figures 4A-B).31,33,36,116,117,202,203

Based on the aforementioned description of the
neuroanatomical distribution of endomorphins and µ-opioid
receptors in the rodent, primate and human CNS (see section
ii); several authors have categorized the functional role of
EM1-2 peptides as neurotransmitters or neuromodulators,
regulating different biological and physiological processes,
as previously described.32 Such modulatory-related activities
mediated by endomorphins include pain perception, stress-
related responses, complex neural functions —such as
reward, arousal, and vigilance—, as well as autonomic,
cognitive, neuroendocrine, and limbic homeostasis.32

Endomorphin peptides have been implicated in the
modulation of neural pathways of pain and/or nociceptive
transmission in several areas of mammals brain,32

particularly, the spino(trigemino)-ponto-amygdaloid
pathway, where nuclei and neuronal elements (e.g. caudal
nucleus of spinal trigeminal tract, parabrachial nucleus, the
NTS, PAG, nucleus ambiguous, LC, and midline thalamic
nuclei) have been shown to express EM1-2-LI material (see
reviews in204,205) (figures 2 and 4A-B). Based on the
anatomical distribution of EM2-LI34,62 and its co-localization
with µ-opioid receptors —densely expressed in spinal cord
neurons and along primary afferent fibers penetrating the
superficial layers of the dorsal horn—,46 EM2 was found to
modulate nociceptive transmission pathway, modulating
the release of excitatory transmitters (e.g. glutamate [Glu],
substance P,γ-aminobutyric acid [GABA], glycine [Gly],
including the calcitonin gene-related peptide [CGRP
peptide]) and by stimulating presynaptic µ-opioid receptors
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expressed in axon terminals along the Lissahuer tract that
penetrates the superficial dorsal horn and established
synaptic contacts with intrinsic and relaying neurons of the
spinal cord (figure 4A).206,207

Supporting evidences for the modulatory role of EM2
on primary nociceptive transmission pathways come from
electrophysiological studies that showed the evoked-release

of EM2 from dense-cored vesicles from spinal neurons after
electrical stimulation from the dorsal root ganglion
fibers;208,209 in addition to the EM-2-induced hyperpolarizing
responses on cell-membranes of intrinsic spinal neurons, and
the decreased excitability of postsynaptic µ-opioid receptors
in intrinsic relay neurons as well.210

Furthermore, supraspinal (ICV) and spinal (IT)
administration of EM1/EM2 showed that both amide
tetrapeptides influence several neurotransmitter systems, in
a similar fashion as demonstrated for morphine and
DAMGO (preferential agonists of the µ-opioid receptor
subtypes MOR1/MOR2) in the rat’s CNS.33,34 In such a
context, anatomical and pharmacological studies have

Figure 4. Schematic representation of the putative role of endomorphin-2 modulating nociceptive transmission and pain perception
in the brain of mammals. Panel A illustrates a hypothetical situation whereby endogenous EM-2 peptide might be involved in the regula-
tion of nociceptive transmission through the activity of intrinsic spinal neurons. Stimulation of peripheral nociceptors will relay nociceptive
transmission enhancing the release of EM2 from vesicles localized in axon terminals of penetrating primary neuronal afferents to superficial
dorsal horn (Lissahuer tract). (1) EM-2, exerting a regulatory function on postsynaptic cells, may decrease the activity of postsynaptic µ2-
opioid receptors. (2) EM-2 may exert an autoregulatory function via the activation of its presynaptic cognate µ1-opioid receptor, expressed
either on axon terminals of incoming neural afferents or on intrinsic dorsal horn neurons. Thus, presynaptic activation of µ1-opioid recep-
tors will lead to significant inhibition on the local release of excitatory peptide (Substance P [SP]; calcitonin gene-related peptide [CGRP]) and
non-peptide transmitters Glu from primary neuronal afferents; and conversely, EM-2 may enhance the release of dynorphin A (DYN-A) from
local spinal neurons (see inset, upper left) (see text for more details).
Panel B depicts different neural pathways involved in nociceptive transmission and modulation of pain during supraspinal and supraspinal
administration of EM-1 and EM-2. Abbreviations: DYN, dynorphin A; ME, met-enkephalin; 5-HT, serotonin; NA, noradrenaline; α2-R,
alpha-2 noradrenergic receptor, δ2-R, delta-2 enkephalin-opioid receptor subtype; µ-R, mu-opioid receptor subtype (see text for more
details) (text and figures were adapted from Fichna et al., 2007, and modified for the present review).
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extensively shown that neurotransmitters systems and
chemical substrates that mediate mesencephalic analgesia
induced by morphine (at the rostral ventromedial medulla)
include the serotonin (5-HT),211,212 the inhibitory GABAergic
system;213,214 the Glutamatergic and N-methyl-D-aspartate
excitatory system,215,216 and the neurotensin peptide system
as well (figures 4A-B).217

Pharmacological studies showed that both NA and 5-
HT (acting on spinal cord, α2- and 5-HT receptors subtypes)
mediate antinoceptive/analgesia responses induced by ICV
administration of DAMGO,218,219 and conversely, the
induced-depletion of both neurotransmitters (NA, 5-HT)
after IT administration of 6-hydroxydopamine (6-OHDA)
and/or 5,7-dihydroxytryptamine (5,7-DHT), respectively,
or IT administration of yohimbine and methysergide (used
to block spinal α2-adrenoreceptors and serotonin receptors)
respectively; attenuated the antinociception response
induced after ICV administration of morphine.220-223 In a
similar context, the antinoceptive responses induced after
ICV administration of EM1/EM2 peptides were completely
abolished after depleting (> 90%) the spinal NA system with
IT administered 6-OH-DA (3-day pretreatment period with
neurotoxic compound).129 However, administration of 5,7-
DHT (which depleted both 5-HT [³ 90%] and NA [≅  25%])
attenuated, but did not block the endomorphin-induced
antinociception. These results clearly showed the relevance
of the NA system over the 5-HT system in mediating the
induced-antinociception by the supraspinal (ICV)
administration of endomorphin molecules (figure 4B).32,129

Complementary results showed that the antinoception-
induced effect detected after the spinal administration of
EM1/EM2 peptides into mice was abolished with µ-recep-
tor antagonists (e.g. naloxone, β-funaltrexamine), but not by
the neurotoxic agents, 6-OHDA or 5,7-DHT,
respectively,129,202 suggesting that the spinal induced-
antinociception by EM1/EM2 peptides is caused by the direct
stimulation of µ-opioid receptors, without affecting the NA
or 5-HT transmission.32,129,202 Moreover, parallel studies
showed that the supraspinal antinociception induced by ICV
administration of EM2, but not EM1, were shown to be
mediated by the activity of dynorphin A1-17 and Met-
enkephalin peptides, acting on their cognate κ- and δ2-opioid
receptor subtypes, respectively.40 Thus, these data
demonstrated functional differences in the spinal and
supraspinal antinociceptive effects induced by EM1 and EM2
substances.40

Several studies provided strong evidence that the
peripheral administration of endomorphins produce simi-
lar analgesic effect shown after IT or ICV administration of
same opioid tetrapeptides. Albeit that the EM1/EM2
peptide-induced analgesia was demonstrated to be
mediated through the activation of µ- and δ-opioid
receptors expressed on primary neuronal afferents
penetrating the dorsal horn (see above and figures 4A-B),224-

226 the precise mechanisms and neural pathways mediating
antinociception from peripherally-administered opioids are
still unclear. In this context, several studies showed that
EM1 produced a dose-dependent and naloxone-dependent
reversible analgesia after i.p. administration in rats,
exhibiting a delayed and less pronounced analgesic
response when compared to the faster and increased
antinociceptive effect induced from ICV or IT administered
opioid peptides.227 The reduced analgesic effect observed
after peripheral administration of opioid peptides could
be explained by the rapid enzymatic degradation of EM1/
EM2 peptides in peripheral tissues (by unspecific
membrane proteasas or esterases), besides the low
permeation capability of these peptides to cross the brain-
blood barrier (BBB), producing a small amount of active
substances to elicit a centrally-mediated analgesia
response.228,229 Whether peripheral administered-opioid
peptides produced their antinociceptive/analgesia effect via
this route or after permeating the BBB, is still a controversial
issue, which requires further investigation (figures 4A-B).32

With regard to opioid-peptides inducing tolerance, in
vivo studies showed that pre-treatment with different doses
of EM1 or EM2 peptides in rodents (mice, rats)37,84,117 or the
initial administration of single high doses of EM1 or EM2
peptides230-233 produced acute tolerance to the antinociceptive
responses, induced by EM1/EM2 peptides after IT or ICV
administration. Although tolerance development by EM1/
EM2 was much faster than that induced by morphine,
tolerance induced by EM1 required a longer pretreatment
time-period when compared to pretreatment with EM2,
before the acute antinociceptive tolerance was observed. Such
variations in the EM1/EM2 producing acute antinociceptive
tolerance responses were proposed to be due to several
pharmacological and cell-related mechanisms (e.g. different
peptide half-lives, differences in µ-opioid receptor selectivity,
divergent neuronal mechanisms), but not to the degree of
how EM1-2 peptides stimulate membrane-bound µ-opioid
receptors or induced µ-opioid receptor desensitization.232

Moreover, cross-tolerance studies (evaluating the induced-
antinociceptive effects of EM1/EM2 peptides and morphine
in both tail-flick and paw pressure tests in rats) showed that
animals displayed a tolerance effect to EM2, exhibiting a
partial antinociceptive cross-tolerance to EM1. However, rats
displaying tolerance to EM1 showed no cross-tolerance to
EM2.231

Similarly, these studies showed a cross-tolerance
between morphine and EM1, but not for EM2, thus
suggesting that morphine/EM1 mediate their analgesic/
tolerance effects via a common target opioid receptor (e.g.
the µ2-opioid receptor subtype), whereas EM2 appears to
mediate their opioid-related responses via a different
membrane-bound opioid receptor (e.g. the µ1-opioid re-
ceptor subtype) or via a spliced variant of the µ2-opioid
receptor and/or the same receptor displaying a different
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physical state of the functionally expressed µ-opioid recep-
tor subtype.231

Moreover, cross-tolerance studies (evaluating the
induced-antinociceptive effects of EM1-2 peptides and
morphine in both tail-flick and paw pressure tests in rats)
showed that animals made tolerant to EM2 exhibited a partial
antinociceptive cross-tolerance to EM1, whereas rats tolerant
to EM1 showed no cross-tolerance to EM2.231 Similarly, these
studies showed a cross-tolerance between morphine and
EM1, but not for EM2, thus suggesting that morphine/EM1
mediate their analgesic/tolerance effects via a common target
opioid receptor (e.g. the µ2-opioid receptor subtype),
whereas EM2 could mediate their opioid-related responses
via a different membrane-bound opioid receptor (e.g., the
µ1-opioid receptor subtype) or via a spliced variant of the
µ2-opioid receptor and/or the same receptor displaying a
different physical state of the functionally expressed µ-opioid
receptor subtype.231 Albeit the several studies used to
characterize the development of tolerance to the
antinociceptive effects mediated by EM1-2 peptides in ani-
mal models of pain, tolerance responses to other
endomorphin-inducing activities have not been elucidated
and/or compared to morphine, its parent compound. For
instance, tolerance does not develop for all of the alkaloid-
mediating or inducing behavioral or functional responses
(e.g. tolerance does not develop during morphine-inducing
locomotor activity responses) (see corresponding sections
vii-ix in the following chapter, part II, in this journal).234
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